Основы корреляционного анализа
статистика экономический индекс вариация дисперсия
Виды и формы связей. Функциональные и корреляционные связи. Методы измерения степени тесноты корреляционной связи между признаками и оценка их существенности. Линейный коэффициент корреляции и линейный коэффициент детерминации. Уравнение регрессии. Нахождение параметров уравнения регрессии и проверка их значимости. Показатели эластичности.
Задача 1.
По пяти рабочим цеха имеются данные о квалификации и месячной выработке. Для изучения связи между квалификацией рабочих и их выработкой определить линейное уравнение связи и коэффициент корреляции. Дать интерпретацию коэффициентам регрессии и корреляции.
Табельный номер рабочего |
Разряд |
Выработка продукции за смену, шт. |
1 2 3 4 5 |
6 2 3 5 4 |
130 60 70 110 90 |
Решение:
Линейное уравнение связи:
y=a+bx
=a+130*b, a=6-130*b
=a+110*b, a=5-110*b
-130*b=5-110*b; 6-5=130*b-110*b; 1=20*b; b=1/20=0,05
=a+0,05*130; a=6-0,05*130; a=-0,5
Линейное уравнение примет вид:
y=-0,5+0,05x
Проверка:
4=-0,5+0,05*90, 4=4; 3=-0,5+70/20, 3=3; 2=-0,5+60/20, 2=2,5 -
работник 2-го разряда перевыполняет норму и не вписывается в общую зависимость.
Коэффициент корреляции:
Найдём числитель (n=5):
(2*60+3*70+4*90+5*110+6*130)-(2+3+4+5+6)*
*(60+70+90+110+130)/5=2020-20*460/5=180
Σx²-(Σx)²/n=(60²+70²+90²+110²+130²)-(60+70+90+110+130)²/5=
=45600-211600/5=45600-42320=3280
Σy²-(Σy)²/n=(2²+3²+4²+5²+6²)-(2+3+4+5+6)²/5=90-400/5=90-80=10
r=180/√3280*√10=180/181,1077=0,99388
По шкале Чеддока связь классифицируется как функциональная. Поскольку (0,99388>0,99100), модель надёжна, связь статистически значима.
Другое по теме
Проектирование copy-центра Распечатница
Открытие
copy-центра относится к числу легко реализуемых идей для бизнеса. Реализация
относительно несложных востребованных услуг подойдет для новичка в мире
индивидуального предпринимательства. Будучи весьма рентабельным видом
предпринимательства с большим количеством конк ...